
Accident Analysis and Prevention xxx (2006) xxx–xxx

Modeling motor vehicle crashes using Poisson-gamma models: Examining
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Abstract

There has been considerable research conducted on the development of statistical models for predicting crashes on highway facilities. Despite
numerous advancements made for improving the estimation tools of statistical models, the most common probabilistic structure used for modeling
motor vehicle crashes remains the traditional Poisson and Poisson-gamma (or Negative Binomial) distribution; when crash data exhibit over-
dispersion, the Poisson-gamma model is usually the model of choice most favored by transportation safety modelers. Crash data collected for
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afety studies often have the unusual attributes of being characterized by low sample mean values. Studies have shown that the goodness-of-fit
f statistical models produced from such datasets can be significantly affected. This issue has been defined as the “low mean problem” (LMP).
espite recent developments on methods to circumvent the LMP and test the goodness-of-fit of models developed using such datasets, no work
as so far examined how the LMP affects the fixed dispersion parameter of Poisson-gamma models used for modeling motor vehicle crashes. The
ispersion parameter plays an important role in many types of safety studies and should, therefore, be reliably estimated.

The primary objective of this research project was to verify whether the LMP affects the estimation of the dispersion parameter and, if it is,
o determine the magnitude of the problem. The secondary objective consisted of determining the effects of an unreliably estimated dispersion
arameter on common analyses performed in highway safety studies. To accomplish the objectives of the study, a series of Poisson-gamma
istributions were simulated using different values describing the mean, the dispersion parameter, and the sample size. Three estimators commonly
sed by transportation safety modelers for estimating the dispersion parameter of Poisson-gamma models were evaluated: the method of moments,
he weighted regression, and the maximum likelihood method. In an attempt to complement the outcome of the simulation study, Poisson-gamma

odels were fitted to crash data collected in Toronto, Ont. characterized by a low sample mean and small sample size. The study shows that a
ow sample mean combined with a small sample size can seriously affect the estimation of the dispersion parameter, no matter which estimator is
sed within the estimation process. The probability the dispersion parameter becomes unreliably estimated increases significantly as the sample
ean and sample size decrease. Consequently, the results show that an unreliably estimated dispersion parameter can significantly undermine

mpirical Bayes (EB) estimates as well as the estimation of confidence intervals for the gamma mean and predicted response. The paper ends with
ecommendations about minimizing the likelihood of producing Poisson-gamma models with an unreliable dispersion parameter for modeling
otor vehicle crashes.
2006 Elsevier Ltd. All rights reserved.
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. Introduction

There has been considerable research conducted on the devel-
pment of statistical models for predicting crashes on highway

� This paper was presented at the 85th Annual Meeting of the Transportation
esearch Board.
∗ Tel.: +1 979 458 3949; fax: +1 979 845 6481.

E-mail address: d-lord@tamu.edu.

facilities (Abbess et al., 1981; Hauer et al., 1988; Persaud and
Dzbik, 1993; Kulmala, 1995; Poch and Mannering, 1996; Lord,
2000; Ivan et al., 2000; Lyon et al., 2003; Miaou and Lord, 2003;
Oh et al., 2003; Lord et al., 2005a; Miaou and Song, 2005).
Despite numerous developments for improving the estimation
tools of statistical models, such as random-effects (RE) models
(Miaou and Lord, 2003), the Generalized Estimating Equations
(GEE) (Lord and Persaud, 2000; Abdel-Aty and Addella, 2004)
or the full-Bayesian methods (Qin et al., 2004; Miaou and Lord,
2003; Miaou and Song, 2005), the most common probabilistic
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structure of the models used for modeling motor vehicle crashes
remains the traditional Poisson and Poisson-gamma (or Negative
Binomial) distribution.

Crash data have been shown to exhibit over-dispersion,
meaning that the variance is greater than the mean. The over-
dispersion can be caused by various factors, such as data cluster-
ing, unaccounted temporal correlation, model misspecification,
but it has been shown to be mainly attributed to the actual nature
of the crash process, namely the fact that crash data are the prod-
uct of Bernoulli trials with unequal probability of events (this is
also known as Poisson trials). Lord et al. (2005b) have reported
that as the number of trials increases and becomes very large, the
distribution may be approximated by a Poisson process, where
the magnitude of the over-dispersion is dependent on the char-
acteristics of the Poisson trials. (Note: the over-dispersion can
be minimized using appropriate mean structures of statistical
models, as discussed in Miaou and Song, 2005.)

Although different Poisson-based distributions have been
developed to accommodate the over-dispersion (e.g., Poisson-
lognormal, etc.), the most common distribution used for model-
ing crash data remains the Poisson-gamma or Negative Binomial
(NB) distribution. The Poisson-gamma distribution offers a sim-
ple way to accommodate the over-dispersion, especially since
the final equation has a closed form and the mathematics to
manipulate the relationship between the mean and the variance
structures is relatively simple (Hauer, 1997).
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where yit is the response variable for observation i and time
period t,µit the mean response for observation i and time period t,
and φ is the inverse dispersion parameter of the Poisson-gamma
distribution.

The term φ is usually defined as the “inverse dispersion
parameter” of the Poisson-gamma distribution. (Note: in the sta-
tistical and econometric literature, α = 1/φ is usually defined as
the dispersion parameter; in some published documents, the vari-
able α as also been defined as the “over-dispersion parameter”.)
Usually the dispersion parameter or its inverse is assumed to be
fixed, but recent research in highway safety has shown that the
variance structure can potentially be dependent on the covariates
(Heydecker and Wu, 2001; Miaou and Lord, 2003; Lord et al.,
2005a).

As opposed to data collected in other fields of research, crash
data have the uncommon attribute to frequently exhibit a distri-
bution with a low sample mean. Similarly, it is not unusual for
researchers and practitioners to develop statistical models using
a limited number of observations (or sites) where data can be
collected (see e.g., Lord, 2000; Oh et al., 2003; Kumara et al.,
2003). Small sample sizes are attributed to the prohibitive costs
of collecting crash data and other relevant variables (Lord and
Bonneson, 2005).

Data characterized by a low sample mean has been sporad-
ically studied in the traffic safety literature. As such, Maycock
and Hall (1984) first raised the issue related to the low sample
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Poisson-gamma models in highway safety applications have
een shown to have the following probabilistic structure: the
umber of crashes at the ith entity (road section, intersections,
tc.) and tth time period, Yit, when conditional on its mean µit,
s assumed to be Poisson distributed and independent over all
ntities and time periods as:

it|µit ∼ Po(µit) i = 1, 2, . . . , I and t = 1, 2, . . . , T (1

he mean of the Poisson is structured as:

it = f (X; β) exp(eit) (2)

here f(·) is a function of the covariates (X), β a vector of
nknown coefficients, and eit is the model error independent
f all the covariates.

It is usually assumed that exp(eit) is independent and gamma
istributed with a mean equal to 1 and a variance 1/φ for all i
nd t (with φ > 0). With this characteristic, it can be shown that
it, conditional on f(·) and φ, is distributed as a Poisson-gamma
andom variable with a mean f(·) and a variance f(·)(1 + f(·)/φ),
espectively. (Note: other variance functions exist for Poisson-
amma models, but they are not covered here since they are
eldom used in highway safety studies. The reader is referred to
ameron and Trivedi (1998) and Maher and Summersgill (1996)

or a description of alternative variance functions.) The proba-
ility density function (PDF) of the Poisson-gamma structure
escribed above is given by the following equation:

(yit ; φ, µit) = Γ (yit + φ)

Γ (φ)yit!

(
φ

µit + φ

)φ(
µit

µit + φ

)yit

(3)
ean. Fridstrøm et al. (1995) further discussed this issue, while
aher and Summersgill (1996) showed how the goodness-of-fit

f statistical models could be affected by a low sample mean.
hey defined this issue as the “low mean problem” (LMP). Sub-
equent to the identification and its effects on the development
f statistical models, Wood (2002) proposed a method to test the
t of statistical models developed using data characterized with

ow sample mean values.
Despite the important work done on this topic, nobody has

o far examined how the LMP affects the dispersion parame-
er of a Poisson-gamma model. In the traffic safety literature,
he dispersion parameter is often relegated to a second-tier term
nd assumed to be estimated without any uncertainty (i.e., many
tudies did or still do not provide any uncertainties associated
ith the estimated dispersion parameter or its inverse). Given the

act that φ, the inverse dispersion parameter, is a critical param-
ter for developing confidence intervals (Myers et al., 2002;
ood, 2005) and for refining the estimates of the predicted mean
hen the empirical Bayes (EB) method is used (Hauer, 1997),
ne has to ensure that the dispersion parameter or its inverse
as been properly estimated. In addition to the LMP, there is a
eed to study how a small sample size can affect the estimation
f the dispersion parameter of Poisson-gamma models. When
arge databases are available for developing statistical models,
s it is the case in many other fields of research, the outcome of
he modeling effort is often assumed to be asymptotically dis-
ributed. In fact, the output provided by commercially available
tatistical software programs is based on the assumption that the
utcome of the analysis is also asymptotically distributed (see
orris, 1997, for a discussion on this topic). This assumption

ndicates that as the number of observations becomes large, the
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statistical inferences associated with the estimated coefficients
become approximately normally distributed. Unfortunately, sta-
tistical models produced for traffic safety applications usually
do not have the luxury of being developed using extremely large
databases or with high sample means.

The purpose of this study is two-fold. The first objective seeks
to verify whether the LMP affects the estimation of the disper-
sion parameter and, if so, to determine the magnitude of the
problem. Three estimators commonly used for estimating the
dispersion parameter of Poisson-gamma models for modeling
motor vehicular crashes are evaluated: the method of moments
(MM), the weighted regression (WR) and the maximum likeli-
hood method (ML). The second objective consists of determin-
ing the effects of an unreliably estimated dispersion parameter
on common analyses performed in highway safety studies. They
include the application of the EB method and estimating con-
fidence intervals for gamma mean (m) for a given site and the
predicted response (y) for new sites not used as part of the model
development.

To accomplish the objectives of this study, a series of
Poisson-gamma distributions are simulated using different val-
ues describing the mean, the dispersion parameter, and the
sample size. Two sets of distributions are estimated: (1) one
with a fixed population mean (e.g., each site has same gamma
mean) and (2) one with a population mean varying according
to a lognormal distribution. The varying mean is employed to
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and Visser, 1986; Cameron and Trivedi, 1986, 1990; Lawless,
1987) or describing potential biases, such as unstable variance
and issues related to small sample sizes (Pieters et al., 1977;
Willson et al., 1984a,b; Davidian and Carroll, 1987; Clark and
Perry, 1989; Piegorsch, 1990; Dean, 1994; Toft et al., 2006).
The studies listed above are only a fraction of the published
studies done on this topic and, consequently, the reader is
referred to Piegorsch (1990), Dean (1994) and Cameron and
Trivedi (1998) for additional information on different estimation
techniques.

Up until the late 1980s, researchers who have worked on small
sample size (n) estimation of φ or α have usually focused their
effort on determining whether φ should be estimated directly or,
indirectly through its reciprocal α = 1/φ (Clark and Perry, 1989).
Given the outcome of these studies, it is the generally agreed that
the dispersion parameter α should be estimated directly rather
than its inverse φ (via the PDF of a Poisson-gamma distribu-
tion). According to the literature, the ML estimator of φ does
not have any formal distribution, since there exists a finite proba-
bility that φ may not be calculable (Piegorsch, 1990); this usually
occurs for data characterized with under-dispersion. It has also
been shown that confidence intervals built for α are continu-
ous and usually more symmetric than for φ (Ross and Preece,
1985).

Most recent studies on small sample size estimation tech-
niques have usually focused on estimating potential the biases
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etter characterize crash data observed in the field: (A) simu-
ate sites with similar characteristics, but with different levels of
xposure and (B) adding noise to the data (e.g., missing val-
es, under-reporting, etc.). In an attempt to complement the
utput of the simulation study, Poisson-gamma models are fit-
ed to crash data collected in Toronto, Ont. characterized by a
ow sample mean and small sample size. The study will show
hat a dataset characterized with a low sample mean combined
ith a small sample size can seriously affect the estimation
f the dispersion parameter for extreme conditions, no matter
hich estimator is used in the estimation process. Consequently,

n unreliably estimated dispersion parameter can significantly
ndermine EB estimates as well as the values calculated for
he confidence intervals on the gamma mean and predicted
esponse.

. Previous work

Although a full paper could be devoted on previous work
one on techniques for estimating the fixed dispersion param-
ter of Poisson-gamma models, this section only addresses
he most relevant literature on this topic. The estimation of
he dispersion parameter has been evaluated extensively in
arious fields, including statistics, econometrics, and biol-
gy. It is generally agreed that the first estimator for cal-
ulating the dispersion parameter was initially proposed by
isher (1941). Fisher discussed how the ML method could
e used for estimating the parameter. Following the publica-
ion of Fisher, several researchers expanded on his work by
ither refining the estimation method (Anscombe, 1950; Shenton
nd Wallington, 1962; Gourieroux et al., 1984a,b; Gourieroux
mall sample sizes exert on different estimators. The studies
ave shown that different estimators (among them the MM and
L) perform well, except when the sample mean is low and the

ample size becomes small. When this occurs, many estimators
rovide a biased estimate of the dispersion parameter (the dis-
ribution becomes highly skewed) and has a high probability of
eing mis-estimated.

Among the most significant studies on this topic, Clark and
erry (1989) compared two estimators, the MM and Maximum
uasi-Likelihood method, for different sample sizes (n = 10, 20,
0, and 50) and sample means (λ = 1, 3, 5, 10, 15, and 20). Using
imulated data, they reported that both estimators become biased
hen λ ≤ 3.0 and n < 20. In addition, under these conditions, the
ias becomes more important as φ → ∞ (if the true value of the
nverse of the dispersion parameter is known).

In a follow up study, Piegorsch (1990) examined the ML
stimator and compared the results to the ones of Clark and
erry. Again, using a simulation experiment, the author noted

hat the ML estimator performed as well as the Quasi-likelihood
or large sample sizes. However, Piegorsch reported that the

L estimator was slightly less accurate for small sample sizes
han the Quasi-likelihood. It should be pointed out that in both
tudies, the dispersion parameter was biased for n = 50 both for
he ML and MM estimators.

In a third study, Dean (1994) evaluated the effects of small
ample sizes on the estimation of the dispersion parameter for
even different estimators, including the ML and MM. Dean sim-
lated a NB model with two covariates, i.e. µi = exp(β0 + β1xi),
sing a sample mean varying between 6 and 16. She reported
hat the ML estimator produced a biased estimate as the sample
ize decreased and φ increased (even for a sample mean equal
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to 6). In fact, the biased results influenced the standard errors of
the coefficients of the models.

In the last and very recent study, Toft et al. (2006) studied
the stability of the parameters of the Poisson-gamma model
when it is used for modeling microorganisms that are randomly
distributed in a food matrix. These authors also used simula-
tion to test the stability via the maximum likelihood method.
However, in this case, they examined an alternative parameteri-
zation of the Poisson-gamma model commonly used in biology,
where the mean and variance functions are defined as µ = τν and
σ2 = τν2, respectively. Toft et al. (2006) reported that the param-
eter estimation becomes unstable when the parameter ν → 0
and n → 0. Indeed, even for µ = 10 and n = 100, the maximum
likelihood method did not provide a reliable estimate of the
parameters.

In summary, all previous studies described above have shown
that small sample sizes and low sample mean values can sig-
nificantly and negatively affect different estimators of the dis-
persion parameter. The dispersion parameter becomes increas-
ingly underestimated as n → 0, µ → 0 and α → 0 (the the-
oretical dispersion parameter if one were to know the true
value). It should be pointed out that the researchers for all
three studies have not examined the effects of a sample mean
below 1 nor a dispersion parameter above 1 (e.g., α = 1/φ > 1)
either mutually or independently. In all cases, the authors have
argued that NB models characterized with a dispersion param-
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The estimator is given by the following equation:

α̂ = 1

n − p

n∑
i=1

{(yi − µ̂i)2 − µ̂i}
µ̂2

i

(4)

In Eq. (4), the term p refers to the number of parameters included
in the model and n is the sample size. The confidence intervals for
estimating the uncertainty associated with this estimator are usu-
ally not calculated by analysts who use this estimator due to the
complexity of mathematics involved for computing the intervals.
Although the delta method can be used for building confidence
intervals, its derivation can be very cumbersome (Cameron,
2005). Therefore, it is suggested to use a bootstrapping method
for estimating the confidence intervals for Estimator 1 (Cameron
and Trivedi, 1998; Cameron, 2005).

3.2. Estimator 2

The second estimator has been proposed by Cameron and
Trivedi (1986). For Estimator 2, the dispersion parameter is
estimated using a weighted regression analysis. The second esti-
mator is given by the following equation:

(yi − µ̂i)2 − yi

µ̂i

= αµ̂i + ε (5)

In essence, the functional form of this estimator is very sim-
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ter equal to 1 is considered highly dispersed and, conse-
uently, unlikely to be observed in the field. Finally, the data
ere simulated using the PDF of a NB distribution rather than
sing a simulation approach proposed in this study (described
elow).

. Dispersion parameter estimators

Although numerous estimators have been proposed in the
iterature, the three most commons ones used by transportation
afety modelers have been selected for this research. In addition,
ome of these estimators are used by existing statistical software
rograms, while others have been proposed for re-calibrating
oisson-gamma models developed using crash data (Persaud et
l., 2002; FHWA, 2003; Lord and Bonneson, 2005).

.1. Estimator 1

The first estimator consists of computing the dispersion
arameter using the method of moments. For Estimator 1, the
nalyst is required to use the output of the regression analy-
is. Once the value of the dispersion parameter is estimated, the
nalyst puts the new value into the regression model and per-
orms a new regression analysis. This iteration is performed
ntil all values converge (i.e., dispersion parameter, coeffi-
ients, etc.). This estimator usually converges after a single
teration. Estimator 1 has been tested and used extensively in
arious fields of research (Gourieroux et al., 1984a,b; Lawless,
987; Hauer, 1997; McCullagh and Nelder, 1989; Cameron and
rivedi, 1998). This estimator was proposed by FHWA (2003)
or re-calibrating statistical models of motor vehicle crashes.
lar to Estimator 1, but the actual crash count is subtracted
rom the square of the difference between the observed and
redicted values. This estimator uses the same iterative proce-
ure as Estimator 1. According to Cameron and Trivedi (1986),
his estimator provides a more rational way for estimating the
ispersion parameter since the variance of the left-hand of the
quation is asymptotically distributed. This is apparently essen-
ial when the Poisson distribution is tested using the score test
roposed by Lee (1986). Lord and Bonneson (2005) proposed
his estimator for re-calibrating Poisson-gamma models devel-
ped using motor vehicle crashes. The confidence intervals can
e computed directly from the output of the regression analysis.

.3. Estimator 3

The third estimator was originally proposed by Fisher (1941)
nd later improved by Lawless (1987). This estimator consists
f estimating the dispersion parameter using the maximum like-
ihood method. The log-likelihood function of Poisson-gamma

odel is given by the following equation:

(α, µ̂i) =
n∑

i=1

(
ln

{
�(yi + α−1)

�(α−1)

}
+ yi ln{µ̂i}

−(yi + α−1) ln{1 + αµ̂i}
)

(6)

his function can be written without call to the gamma function,
uch that

n

{
�(yi + α−1)

�(α−1)

}
=

yi−1∑
j=0

ln

{
1 + αj

α

}
=

yi−1∑
j=0

ln{1 + αj} (7)
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(Lawless, 1987; Piegorsch, 1990). Incorporating Eqs. (7) into
(6) produces the following log-likelihood function


(α, µ̂i) =
n∑

i=1

⎛
⎝yi−1∑

j=0

ln(1 + αj) + yi ln{µ̂i}

−(yi + α−1) ln{1 + αµ̂i}
)

(8)

The gradient elements of new log-likelihood function are defined
as follows:

∇µ
 = yi

µ̂i

− 1 + αyi

1 + αµ̂i

(9a)

∇α
=
n∑

i=1

⎛
⎝yi−1∑

j=0

j

1 + αj
+ α−2 ln{1 + αµ̂i} − µ̂i(yi + α−1)

1 + αµ̂i

⎞
⎠
(9b)

Using the gradients, the Newton-Raphson (NR) scoring algo-
rithm can be used to find the values of the log-likelihood func-
tion through the maximum likelihood method (Fletcher, 1970;
Walsh, 1975). According to Lawless (1987), this estimator is
valid only if the parameters βs (the coefficients of the model)
and α are asymptotically independent and normally distributed.
He demonstrated this property using large-sample approxima-
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The second series involved the simulation of a Poisson-
gamma distribution, but in this case the mean was taken from
a sample population that is assumed to follow a lognormal dis-
tribution. The second series was intended to more adequately
replicate real data where the mean for each observation varies
as a function of exposure. Larger exposure is associated with
a higher mean, although usually increasing at a decreasing rate
as exposure increases (y = β0F

β1 ). For instance, a lognormal
distribution was fitted for a dataset previously used by Lord
(2000) and characterized the data adequately (see Fig. 1). In this
dataset, the predicted means (µ̂i) (after the statistical model was
fitted) varied according to a lognormal distribution with a loga-
rithmic mean equal to 1.14 and a variance equal to 0.49. Using
a lognormal distribution does not necessarily imply that other
distributions, such as the gamma or beta distributions could not
fit the data better, but this distribution is simple to manipulate
and prevents negative values. In the end, using a varying sample
mean can reproduce noises one can observe in the data collected
in the field (e.g., missing values, under-reporting collisions, etc.).
Finally, as discussed in Section 1, the Poisson-gamma model is
in fact used as an approximation for modeling crash data (Lord
et al., 2005b).

The simulation framework or algorithm is described
below.

(

(

ions (high sample mean and large sample size). The dispersion
arameter of the Poisson-gamma model in GENSTAT (Payne,
000), the software used in this study, is estimated using the
pproach proposed by Lawless (1987). SAS also uses the same
pproach for estimating the dispersion parameter (SAS Institute
nc., 2002).

The NR algorithm can be used for building the confidence
ntervals associated with the estimator (Lawless, 1987; Payne,
000). In fact, many statistical software programs now provide
onfidence intervals for the estimated dispersion parameter.

In the subsequent sections, the results are shown using the
nverse dispersion parameter (φ). Given that most safety studies
how the inverse (often called the “k-value”), the results are
resented in this manner to render the comparison with previous
ork on this subject easier.

. Simulation framework

This section presents the characteristics of the simulation
tudy intended to illustrate how the LMP and the small sam-
le size affect the three estimators described above. Rather than
imulating the data using the PDF of a NB distribution, the
imulation was performed using a mixed distribution where the
ample mean and the count data were simulated in a step-wise
ashion. This approach offered more flexibility, particularly for
he second series of simulation runs. In this exercise, two series
f simulation runs were performed. The first series consisted of
imulating a Poisson-gamma distribution using a fixed sample
opulation mean. In other words, each simulated observation
as taken from a sample population having the same ‘gamma’
ean.
A) Fixed sample population mean
(1) Generate a mean value (ρi) for observation i from a

fixed sample population mean (λ):
ρi = λ

(2) Generate a value (δi) from a gamma distribution with
the mean equal to 1 and the parameter φ:

δi ∼ gamma

(
φ,

1

φ

)

(3) Calculate the mean (µi) for observation i:
µi = ρi × δi

(4) Generate a discrete value (Yi) for observation i from a
Poisson distribution with mean µi:
Yi ∼ Poisson(µi)

(5) Repeat steps 1 and 4 “n” times for the number of
observations under study (defined here as the sample
size).

B) Varying sample population mean
(1) Generate a mean value (ρi) for observation i from a

sample population that follows a lognormal distribu-
tion:
ρi ∼ log normal(λ, σ)

(2) Generate a value (δi) from a gamma distribution with
the mean equal to 1 and the parameter φ:

δi ∼ gamma

(
φ,

1

φ

)

(3) Calculate the mean (µi) for observation i:
µi = ρi × δi

(4) Generate a discrete value (Yi) for observation i from a
Poisson distribution with mean µi:
Yi ∼ Poisson(µi)

(5) Repeat steps 1 and 4 “n” times for the number of obser-
vations under study.
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Fig. 1. Distribution of the predicted values (the predicted values were estimated using the following functional form: µi = 0.0002433 × F0.527
1i

× F0.568
2i

×
e(8.61E−6×F2i) with φ = 6.91. At the time model was estimated, the software program was unable to provide inferences associated with the estimate of the inverse
dispersion parameter) (µi) for 868 signalized intersections in Toronto, Ont. for 1995 (Lord, 2000).

The parameterization of the gamma distribution above,
θ ∼ gamma(a, b), needs to be used when its mean and variance
are defined as E(θ) = ab and Var(θ) = ab2, respectively. (There
also exist an alternative approach for defining E(θ) and Var(θ).)
GENSTAT (Payne, 2000) uses this parameterization for generat-
ing gamma distributed values. It can be shown that when E(θ) = 1
and Var(θ) = 1/φ (where a = φ and b = 1/φ), the Poisson-gamma
function gives rise to a NB distribution with Var(Y) = µ + µ2/φ
(Cameron and Trivedi, 1998). The simulation effort was per-
formed using GENSTAT (Payne, 2000) for the following values:

• Sample size or number of observations (n): 50, 100, 1000.
• Inverse dispersion parameter (φ) = 1/2, 1, 2.
• Sample population mean (λ) = 0.5, 1.0, 10 (fixed mean only).

The values in bold character characterize data subjected to
extreme conditions: low sample mean and/or small sample sizes.
(Note: Clark and Perry (1989), Piegorsch (1990), and Dean
(1994) reported that data subjected to φ = 1 are considered highly
dispersed and unusual.) The other values are used to assess the
asymptotic properties of the data for n × λ → ∞ (see Lawless,
1987).

For each combination of sample size, dispersion parameter,
and sample mean, the simulation was replicated 30 times. Due
to the partial manual manipulations needed to summarize the
r
r
r
t
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5. Simulation results

This section summarizes the results of the simulation output.
The first part describes the simulation results for the fixed sample
mean. The second part summarizes the simulation results for the
varying sample mean.

5.1. Fixed sample mean

In order to test the asymptotic properties of the estimators, a
series of simulation runs was performed using a sample mean
equal to 10. The results of the simulation are summarized in
Table 1.

Table 1 shows that for a sample size of 1000, all three esti-
mators accurately predicted the theoretical values of the inverse
dispersion parameter for φ = 1/2, φ = 1, and φ = 2. For a sample
size of 100, the three estimators also predicted the theoretical
values accurately, but the standard deviation is a little larger and
the extreme simulated values (i.e., max and min) are becoming
more noticeable. With a sample size of 50, which is consid-
ered a small sample size according to Clark and Perry (1989),
the estimators tend to overestimate the theoretical mean, particu-
larly for φ = 1 and φ = 2, respectively (i.e., meaning the predicted
values are higher than the theoretical value for the inverse disper-
sion parameter). Furthermore, the values describing the standard
d
p
m

e
t
φ

c
(

esults of the simulation process and the numerous simulation
uns, the number of replications was limited to 30. A few trial
uns were performed using a larger number of replications, but
he summary statistics as well as the inferences did not change
ompared to the original values estimated from the original num-
er of replications. At the end of the replications, the standard
tatistics, such as the mean, standard deviation, maximum and
inimum values, and the number of times the estimator did not

onverge (when it occurred) were computed.
eviations are very large for the same two inverse dispersion
arameters. For φ = 2, the difference between the maximum and
inimum values varies by a factor of two.
The overestimation of the inverse dispersion parameter is

xplained by the fact the parameter is no longer normally dis-
ributed. A closer look at the data shows that the distribution for
= 1 and φ = 2 was highly skewed. As described above, this out-

ome was also noted by Clark and Perry (1989) and Piegorsch
1990). In short, for a sample size equal to 50 and a sample mean
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equal to 10, the estimated dispersion parameter has a slight prob-
ability of being mis-estimated, although less than 5%.

Between the three estimators, the third estimator (ML) offers
a slightly better prediction both in terms of mean and standard
deviations. However, the comparison between the three estima-
tors was not statistically significant.

The results of the simulation for λ = 1.0 and λ = 0.5 are
presented in Tables 2 and 3, respectively. In Table 2, it can
be observed that for a sample size equal to 1000, all three
estimators predict the theoretical value adequately. However,
the estimators start to overestimate the theoretical value with
a sample size equal to 100. For φ = 2, the mean of the esti-
mated values is in fact 1.5 times larger than theoretical value.
All three estimators for φ = 2 and n = 50 are completely unre-
liable. In fact, the data produced from many simulation runs
erroneously exhibited a pure Poisson distribution. It should
be pointed out that for λ = 1.0, no estimator outperformed the
others.

Table 3 exhibits similar characteristics as the ones presented
in Table 2. However, the values now become unreliable or
unstable for a sample size equal to 100 for φ = 2. To some
degree, the values are also unstable for φ = 1 and a sample
size equal to 100. For a sample size equal to 50, the data
exhibited pure Poisson properties since many estimated val-
ues describing the inverse dispersion parameter were above 10.
However, for the same sample size, some simulation runs exhib-
i
o
f
s
i

h

1

2

3

4

5

i

5

t
t
E

ted significant over-dispersion with values φ < 1. The simulation
utput shows that the inverse dispersion parameter estimated
rom data characterized by low sample mean values and small
ample size is highly unreliable as the theoretical value of φ

ncreases.
In summary, the simulation results for the fixed sample mean

ave shown the following characteristics:

. For large sample size and high mean, all the three estimators
predicted values very close to the theoretical value;

. As the sample size decreases, the distribution of the estimated
values becomes more skewed, which significantly increases
the mean of the estimated values of the inverse dispersion
parameter;

. As a result, the inverse dispersion parameter is more likely to
be unreliable estimated, no matter which estimator is used;

. The standard error of the predicted values increases as the
sample size becomes smaller; this characteristic is more
important as the theoretical inverse dispersion parameter
increases;

. The results are consistent with previous work on this topic.

The next section describes the simulation results for the vary-
ng sample mean.

.2. Varying sample mean

In this exercise, the sample population mean is assumed
o follow a lognormal distribution. It should be pointed out
hat the generated sample mean will be slightly higher since
(Y) = exp(µ + σ2/2). Nonetheless, this outcome did not affect
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Table 2
Simulation results for λ = 1 (fixed mean)

Characteristics φ = 1/2 φ = 1 φ = 2

λ̂ MMa WRb MLc λ̂ MM WR ML λ̂ MM WR ML

n = 50d

Mean 1.02 (0.21)e 0.81 (0.38) 0.82 (0.39) 0.69 (0.31) 1.03 (0.15) 1.32 (0.63) 1.35 (0.64) 1.30 (0.75) 1.09 (0.15) 5.62 (11.06) 5.73 (11.29) 5.73 (12.61)
Max 1.46 2.01 2.05 1.66 1.40 3.33 3.40 4.27 1.44 62.43 63.71 71.66
Min 0.66 0.41 0.42 0.34 0.76 0.58 0.59 0.58 0.80 0.92 0.94 1.09

n = 100
Mean 1.01 (0.15) 0.55 (0.15) 0.56 (0.15) 0.52 (0.12) 1.02 (0.16) 1.06 (0.47) 1.07 (0.47) 1.03 (0.43) 1.00 (0.11) 3.27 (2.72) 3.31 (2.75) 3.38 (3.02)
Max 1.31 0.97 0.98 0.91 1.43 2.60 2.63 2.31 1.21 12.37 12.50 14.00
Min 0.64 0.23 0.23 0.32 0.81 0.36 0.36 0.49 0.77 1.06 1.07 1.23

n = 1000
Mean 0.99 (0.06) 0.51 (0.06) 0.51 (0.06) 0.50 (0.04) 0.99 (0.04) 1.02 (0.13) 1.02 (0.13) 1.01 (0.12) 0.99 (0.03) 2.01 (0.28) 2.01 (0.28) 2.01 (0.30)
Max 1.08 0.63 0.63 0.57 1.08 1.40 1.40 1.33 1.05 2.73 2.73 2.84
Min 0.87 0.39 0.39 0.42 0.87 0.75 0.75 0.81 0.92 1.61 1.61 1.56

a Method of moments (Estimator 1).
b Weighted regression (Estimator 2).
c Maximum likelihood (Estimator 3).
d Sample size.
e Standard deviation.

Table 3
Simulation results for λ = 0.5 (fixed mean)

Characteristics φ = 1/2 φ = 1 φ = 2

λ̂ MMa WRb MLc λ̂ MM WR ML λ̂ MM WR ML

n = 50d

Mean 0.54 (0.15)e 0.70 (0.35) 0.71 (0.36) 0.67 (0.36) 0.51 (0.09) 3.18 (4.67) 3.25 (4.77) 2.74 (3.68) 0.52 (0.10) 6.04 (8.18) 6.17 (8.35) 5.72 (8.08)
Max 0.96 1.67 1.70 1.80 0.66 25.75 26.27 20.10 0.74 29.65 30.25 32.98
Min 0.32 0.32 0.21 0.27 0.34 0.52 0.53 0.47 0.30 0.91 0.92 1.21

n = 100
Mean 0.47 (0.11) 0.74 (0.38) 0.75 (0.39) 0.67 (0.29) 0.52 (0.09) 1.45 (0.98) 1.47 (0.99) 1.28 (0.83) 0.53 (0.10) 3.90 (3.83) 3.94 (3.87) 3.67 (3.42)
Max 0.67 1.89 1.91 1.45 0.68 4.30 4.34 3.48 0.70 19.72 19.92 17.82
Min 0.26 0.23 0.23 0.29 0.32 0.36 0.36 0.3 0.37 1.35 1.36 1.25

n = 1000
Mean 0.51 (0.03) 0.52 (0.07) 0.52 (0.07) 0.49 (0.06) 0.49 (0.03) 1.01 (0.21) 1.01 (0.21) 1.00 (0.20) 0.51 (0.02) 2.08 (0.47) 2.08 (0.47) 2.09 (0.47)
Max 0.56 0.78 0.78 0.75 0.54 1.53 1.53 1.51 0.56 3.00 3.00 3.10
Min 0.46 0.38 0.38 0.41 0.44 0.66 0.66 0.69 0.47 1.29 1.29 1.29

a Method of moments (Estimator 1).
b Weighted regression (Estimator 2).
c Maximum likelihood (Estimator 3).
d Sample size.
e Standard deviation.



D. Lord / Accident Analysis and Prevention xxx (2006) xxx–xxx 9

the simulated data. Simulation runs performed for a sample mean
equal to 5 or above has shown that, for a sample size of 1000, all
three estimators predicted values similar to the values predicted
in Table 1. The variance (σ2) of the sample mean was set to 0.50
(similar to the dataset shown in Fig. 1), which is intended to
reproduce a large variation (in exposure) within the lognormal
distribution.

Table 4 summarizes the simulation results for a sample mean
equal to 1. This table shows interesting characteristics. First, the
estimators no longer provide similar values. In fact, for Esti-
mator 3 (ML), the estimated value is usually lower than the
first two estimators, at least for φ = 1 and φ = 2. It is unclear at
this point why the ML estimates estimate lower values than the
theoretical values. Second, for a sample size equal to 1000, the
estimated values are very close to the theoretical value, although
the standard errors are larger than for the fixed sample mean.
Third, for a sample size of 100, the method of moments does
not provide accurate estimates. The problem is more important
for φ = 1/2 and φ = 2. Fourth, none of the estimators provide
good estimates for φ = 2, particularly for a sample size equal
to 50 and 100. It should be pointed out that the method of
moments failed to converge (or provided non-positive values
or under-dispersion) for many simulation runs for a sample size
equal to 50.

Table 5 summarizes the simulation runs for a sample mean
equal to 0.5. This table shows more drastic results than the ones
s
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6. Observed data

A sample dataset was utilized to determine if the effects of
low sample mean and small sample size on the inverse dis-
persion parameter described via simulation could be replicated
using actual data collected in the field. The dataset was initially
collected for a project related to the development of statistical
models for predicting the safety performance of unsignalized
intersections in Toronto, Ont. (Lord, 2000). The data were col-
lected for the years 1990–1995 at 59 unsignalized intersections.
Fatal and non-fatal injury collisions were used in this example,
since the sample population mean was about one crash per year.
The characteristics of the data are summarized in Table 6.

A Poisson-gamma model was initially fitted for the entire
dataset. For this dataset, each year was treated as an independent
observation. Consequently, the model for the complete dataset
contained 354 observations. For the sake of simplicity, the tem-
poral effect was not included in the development of the model.
Since the dataset does not include missing values, only the stan-
dard errors of the coefficients will be affected no matter the type
of correlation structure used in the model development (see Lord
and Persaud, 2000). The dispersion parameter was estimated for
the three estimators described above.

Two subsets of 50 observations were then extracted. The
observations were taken from the same year (out of the 59 sites).
Then, for each subset, a Poisson-gamma model was fitted and the
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hown in Table 4. For instance, all three estimators become
nstable for φ = 1 and φ = 2, and a sample size equal to 100.
s described in Table 4, the first estimator performs poorly for
sample size below 100 and for φ = 1/2. For a sample size equal

o 50 and φ = 2, none of the estimators converged or provided
easonable results.

In summary, the simulation results for the varying sample
ean have shown the following characteristics:

. All three estimators performed relatively well for a sample
size equal to 1000, with the exception of Estimator 1 for
φ = 2;

. Estimator 1 becomes highly unreliable for a sample size
below 100;

. In most circumstances, Estimator 3 provides better results
and is usually more stable than the other two estimators;

. Overall, Estimator 2 performed relatively better than Estima-
tor 1;

. Although the confidence intervals produced by Estimators
2 and 3 indicate that the inverse dispersion parameter was
adequately estimated for extreme conditions, the theoretical
value of the inverse dispersion parameter lied outside the 95%
confidence interval of the estimated value;

. Data characterized by a low sample mean and a small sample
size are most likely highly dispersed, although the estimators
may show otherwise (the dispersion parameter is under-
estimated).

The next section describes the performance of the three esti-
ators when observed data are used for developing Poisson-

amma models.
hree estimators calculated. It should be pointed out that three
dditional subsets were tested, but the statistical models pro-
uced counterintuitive values for the coefficients (i.e., negative
alues). The results are therefore not shown herein.

The functional form used for the example was the following:

i = β0F
β1
i1 Fβ2

i2 (10)

here µi is the predicted number of crashes per year for site
; Fi1, Fi2 the entering AADT flows for the major and minor
pproaches for site i; β0, β1, β2 are the coefficients to be esti-
ated.
Although the functional form is not the most adequate for

escribing the relationship between crashes and exposure, this
orm is still the most favored by transportation safety modelers
or modeling crash data at intersections. As reported by Miaou
nd Lord (2003), the functional form above does not appropri-
tely fit the data near the boundary conditions.

The modeling results are presented in Table 7. This table
hows that even for the full dataset, the dispersion parameter
aries greatly among the three estimators. In addition, the uncer-
ainty associated with the last two estimators is relatively large.
or the two subsets, one can see that the dispersion parameter
ecomes highly unstable for all three estimators. On the one
and, the estimators for subset 1 are all positive, but the stan-
ard errors are extremely large (at least for Estimators 2 and 3).
n the other hand, the statistical model for subset 2 exhibits,
epending on the estimator, either a pure Poisson distribution
r under-dispersion. The results of the modeling process using
ctual data show that the three estimators do not provide con-
istent values for the same dataset and appear to correspond
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Table 4
Simulation results for original λ = 1 (varying mean)

Characteristics φ = 1/2 φ = 1 φ = 2

λ̂a MMb WRc MLd λ̂a MM WR ML λ̂a MM WR ML

n = 50e

Mean 1.26 (0.37)f 1.19 (1.01) 1.08 (0.95) 0.59 (0.26) 1.21 (0.19) 3.32 (4.39) 1.72 (0.84) 1.21 (0.39) 1.25 (0.21) 6.55 (13.75) 5.03 (5.42) 7.82 (18.26)
Max 1.84 4.25 3.91 1.36 1.70 18.84 3.39 1.75 1.66 77.36 30.11 75.82
Min 0.54 0.19 0.14 0.28 0.80 0.47 0.52 0.53 0.86 0.59 0.95 0.98
Not convergedg 2 5 11

n = 100
Mean 1.34 (0.27) 0.73 (0.61) 0.63 (0.29) 0.47 (0.12) 1.30 (0.21) 2.41 (3.69) 1.24 (0.52) 1.06 (0.43) 1.37 (0.20) 2.66 (2.31) 2.74 (2.43) 2.36 (1.63)
Max 1.93 2.89 1.26 0.71 1.74 16.56 2.75 2.58 2.00 8.77 14.11 9.62
Min 0.85 0.21 0.14 0.28 1.00 0.37 0.20 0.50 0.99 0.31 0.71 1.11
Not converged 4

n = 1000
Mean 1.28 (0.08) 0.51 (0.11) 0.57 (0.15) 0.48 (0.05) 1.28 (0.08) 1.10 (0.32) 1.07 (0.22) 0.92 (0.09) 1.29 (0.05) 2.12 (0.75) 2.21 (0.43) 1.67 (0.22)
Max 1.46 0.77 0.78 0.62 1.43 1.84 1.49 1.09 1.36 4.08 2.91 2.21
Min 1.16 0.32 0.23 0.38 1.14 0.67 0.65 0.79 1.14 0.80 1.60 1.24

a Theoretical value based on the lognormal simulation: 1.28.
b Method of moments (Estimator 1).
c Weighted regression (Estimator 2).
d Maximum likelihood (Estimator 3).
e Sample size.
f Standard deviation.
g The number of times the estimator did not converge.
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Table 5
Simulation results for original λ = 0.5 (varying mean)

Characteristics φ = 1/2 φ = 1 φ = 2

λ̂a MMb WRc MLd λ̂a MM WR ML λ̂a MM WR ML

n = 50e

Mean 0.61 (0.29)f 0.99 (1.64) 1.01 (0.68) 0.73 (0.44) 0.62 (0.13) 1.77 (2.95) 2.07 (2.36) 1.85 (1.69) N/A N/A N/A N/A
Max 1.32 8.80 2.96 2.49 0.96 13.77 11.86 7.84 N/A N/A N/A N/A
Min 0.14 0.04 0.17 0.29 0.34 0.08 0.21 0.52 N/A N/A N/A N/A
Not convergedg 9 2 13 2 30 30 30

n = 100
Mean 0.66 (0.13) 1.40 (3.04) 0.73 (0.52) 0.59 (0.44) 0.63 (0.09) 2.29 (6.74) 1.93 (2.62) 2.12 (4.45) 0.69 (0.11) 2.27 (2.84) 3.15 (2.55) 3.13 (3.69)
Max 0.91 12.99 2.99 2.83 0.83 38.33 15.41 25.68 0.93 12.73 13.14 19.26
Min 0.30 0.11 0.13 0.23 0.47 0.31 0.60 0.53 0.47 0.28 0.72 0.86
Not converged 3 7 6

n = 1000
Mean 0.65 (0.04) 0.55 (0.15) 0.53 (0.14) 0.47 (0.06) 0.63 (0.04) 1.35 (0.63) 1.14 (0.33) 0.92 (0.15) 0.63 (0.03) 7.93 (27.39) 2.13 (0.88) 1.56 (0.23)
Max 0.75 0.93 0.77 0.59 0.70 2.82 2.17 1.37 0.69 154.70 4.58 2.19
Min 0.55 0.30 0.19 0.36 0.52 0.43 0.56 0.71 0.56 0.95 0.98 1.18
Not converged 1

a Theoretical value based on the lognormal simulation: 0.64.
b Method of moments (Estimator 1).
c Weighted regression (Estimator 2).
d Maximum likelihood (Estimator 3).
e Sample size.
f Standard deviation.
g The number of times the estimator did not converge.
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Table 6
Data characteristics of unsignalized 4-legged intersections (Lord, 2000)

Statistic Injury crashes
per year

Flow major
(AADT)

Flow minor
(AADT)

Mean 1.00 26005 1878
Standard deviation 1.12 10832 1616
Max 5 53531 8836
Min 0 5669 378

Table 7
Modeling output for full dataset and subsets 1 and 2

Statistic Full dataset Subset 1 Subset 2

Intercept (β0) −7.65 (1.83) −9.58 (4.92) −9.55 (4.96)
ln(F1) (β1) 0.607 (0.142) 0.711 (0.364) 0.687 (0.367)
ln(F2) (β2) 0.209 (0.103) 0.333 (0.279) 0.356 (0.281)
φ (MM) 2.91 4.52 2.30
φ (WR) 5.78 (3.00) 12.49 (21.17) −22.9
φ (ML) 4.83 (2.37) 10.57 (24.9) N/Aa

Observations 354 50 50
Mean 1.00 1.06 0.98
Standard deviation 1.12 1.15 1.03

a Did not converge; data may be characterized by under-dispersion.

with the outcome of the simulation output (particularly with the
varying sample mean), in which the inverse dispersion parameter
becomes unreliably estimated as the sample size decreases.

7. Discussion

The results of the analysis presented above raise a few impor-
tant issues that merit further discussion. First, as described
above, the statistical inferences associated with the estimation
of the dispersion parameter or its inverse is usually not a concern
for many transportation safety modelers. For instance, before the
wide availability of commercial statistical software programs,
very few researchers, if none at all, provided information on the
confidence intervals associated with the dispersion parameter.
The author could not find any paper that provided such infor-
mation in the 1980s and mid-1990s. However, to be fair with
the researchers from this period, a large part of the problem was
related to the complexity of building confidence intervals and the
lack of tools to do so (see Lawless, 1987; McCullagh and Nelder,
1989). Nonetheless, there are currently still published docu-
ments that do not provide such information (e.g., see Persaud
et al., 2004; Tarko and Kanodia, 2004; Hauer et al., 2004).
Interestingly, some researchers do not even bother providing
information about the dispersion parameter for Poisson-gamma
models produced from crash data (e.g., Noland and Quddus,
2004; Kumara and Chin, 2004).

t
p
i
y
p
c
p

terized with a low sample mean and a small sample size, it is
more than likely that the standard errors associated with the
coefficients of the covariates of the statistical models may be
erroneous. Many methods used for estimating the standard errors
of Poisson-gamma models are based on the dispersion parameter
(Cameron and Trivedi, 1998; Myers et al., 2002; Wood, 2005).

What is more troublesome is the fact that the safety mod-
eler may not be aware the dispersion parameter was actually
mis-estimated. As detailed in the simulation results, for many
simulation runs, Estimators 2 and 3 seemed to provide very good
statistical inferences. Yet, the theoretical value used in the simu-
lation was actually located beyond the 95% confidence intervals
provided by GENSTAT (Payne, 2000) for the estimated value.
For large sample sizes (n = 1000) and high sample mean (λ = 10),
all the theoretical values were located inside the 95% confidence
bound of the estimated values.

The second issue is related to the effects of an unreliably
estimated inverse dispersion parameter on two types of analysis
commonly used in highway safety. The first type of analysis is
the widely applied EB method. This method has become increas-
ingly popular since it corrects for the regression-to-the-mean
(RTM) bias, refines the predicted mean of an entity, and is rela-
tive simple to manipulate compared to the full-Bayes approach
(Hauer and Persaud, 1984; Hauer, 1997). The EB method com-
bines information obtained from a reference group having simi-
lar characteristics with the information specific to the site under
s
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Even with increasing use of statistical software programs
hat can now provide the confidence intervals for the dispersion
arameter (note: the values are often estimated using approx-
mation techniques, such as the delta method), the author has
et to see a paper in which the characteristics of the dispersion
arameter are discussed to the same degree as to the coeffi-
ients of the statistical model (if we make abstraction of recent
apers on varying dispersion parameters). In datasets charac-
tudy with characteristics similar to the ones found in the ref-
rence group. A weight factor is assigned to both the reference
opulation and the site under study. The equation can be defined
he following way:

ˆ̂
i = γiµ̂i + (1 − γi)yi (11)

here ˆ̂µi is the EB estimate of the expected number of crashes
er year for site i; µ̂i the ML estimate produced from a Poisson-
amma model fitted using the reference population for site i
crashes per year); γi = 1/(1 + µ̂i/φ), the weight factor esti-
ated as a function of the ML estimate and the inverse dispersion

arameter; yi is the observed number of crashes per year at site
.

As it can be seen above, the inverse dispersion parameter
lays an important role for estimating the weight factor.

To determine how an unreliably estimated inverse dispersion
arameter affects the weight factor and the EB estimate, the
utput for one of the simulation runs was used to this effect. The
riginal run consisted of simulating data for n = 100, λ = 0.5,
nd φ = 1. As detailed in Tables 2 and 4, a mis-estimated inverse
ispersion parameter can be off by a factor of two to three, i.e.
= 2, φ = 3. The results are shown in Table 8.
Table 8 shows that, even with a small error in the mis-

pecification of the inverse dispersion parameter, the EB esti-
ate can be greatly affected. In this example, the magnitude of

he relative difference could be as high as 43%. When the dis-
ersion parameter is grossly mis-estimated, i.e. φ → ∞, the EB
stimate could be off by 100% (from 2.0 to 1.0 for the most
xtreme values). In this case, the transportation safety mod-
ler may erroneously believe that RTM may not exist with the



D. Lord / Accident Analysis and Prevention xxx (2006) xxx–xxx 13

Table 8
Effects of an unreliably estimated dispersion parameter (λ = 0.5)

y Freqa φ = 1b φ = 2 φ = 3

γ ˆ̂µ γ ˆ̂µ Diff (%)c γ ˆ̂µ Diff (%)c

0 67 0.67 0.33 0.80 0.40 20.0 0.86 0.46 28.6
1 26 0.67 0.67 0.80 0.670 10.0 0.86 0.57 14.3
2 5 0.67 1.00 0.80 0.860 20.0 0.86 0.71 28.6
3 1 0.67 1.33 0.80 5.0 25.0 0.86 0.86 35.7
4 0 – – – – – – – –
5 1 0.67 2.00 0.80 1.40 30.0 0.86 1.14 42.9

Total 100
Ave 0.44

a Frequency or number of observations.
b Theoretical value used for the simulation.
c Relative difference.

crash data under study. It should be pointed out that the abso-
lute difference may appear to be small (i.e., below 0.5 crash
per year for most counts). However, as the inverse dispersion
parameter becomes increasingly miss-specified, the MLE esti-
mate becomes as good an estimator as the EB estimate even for
small absolute differences. In fact, the difference between both
estimates is also small (as shown for φ = 3 where the EB estimate
for y = 0 is 0.46 and the MLE estimate is 0.50). The blurry line
delimiting both estimates is particularly true when one considers
the uncertainty associated with each estimate.

The second type of analysis is related to the estimation of
confidence intervals for the mean (µ), gamma mean (m) and
predicted response (y). There are numerous applications where
the confidence intervals on the predicted mean (y) can play an
important role. For instance, when predictive models are used for
estimating the safety performance of different highway design
alternatives, the confidence intervals (around µ and m) can
play an vital role in the selection process competitive projects.
Examples where the predicted crashes are used for identify-
ing competitive highway design alternatives can be found here:
FHWA (2003), Lord and Persaud (2000), and Kononov and
Allery (2004). In another application, confidence intervals can
also be useful for screening hazardous sites, “black spots” or
the so-called “sites with promise” (Hauer, 1996). Erroneously
selecting sites for treatment (i.e., false positive) can lead to a
significant waste of financial resources, not withstanding miss
o

There are difference methods for estimating the confidence
intervals of the predicted values generated from generalized lin-
ear models (Cameron and Trivedi, 1998; Myers et al., 2002). The
most recent and relevant method has been proposed by Wood
(2005) who specifically developed a procedure for computing
confidence intervals for statistical models developed from crash
data. For the sake of simplicity, the equations for building the
95% confidence intervals on the mean, gamma mean, and pre-
dicted response are reproduced in Table 9. This table shows
that confidence intervals used to estimate the uncertainty of the
gamma mean and the predicted response both incorporate the
inverse dispersion parameter.

As described above, confidence intervals on the mean and
predicted response were built for the predictive model shown in
Table 9. In this case, the sample mean equal to 0.5 was used.
A similar exercise as described above was performed for φ = 1
(the theoretical value), φ = 2 and φ = 3, both assumed to be mis-
estimated (Var(η) is assumed to be constant). The 95% percentile
confidence intervals on the gamma mean (m) (for the given site)
and the predicted response (y) were calculated using the equa-
tions illustrated in Table 9. The results are shown in Figs. 2 and 3,
respectively.

Figs. 2 and 3 show that an unreliably estimated dispersion
parameter can significantly affect the computation of confi-
dence intervals. In Fig. 2, an inverse dispersion parameter that
is mis-estimated by a factor of 100% (from 1 to 2) reduces the
c
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Fig. 2. Ninety-five percent confidence interval for the gamma mean (m) for a
given site (theoretical value used for the simulation: φ = 1).

is mis-estimated by a factor 200%, the confidence interval for
the upper bound decreases by 27%. In Fig. 3, the confidence
interval for the predicted response diminishes by 1 crash or 15%
for a change in 100%. If the statistical model exhibits a pure
erroneous Poisson characteristic (not shown in this graph), the
confidence intervals of the predicted response could be off by as
much as 60%. At that level, an unreliably estimated inverse dis-
persion parameter can have drastic consequences when Poisson-
gamma models, in this case a pure Poisson model, are used for
decision-making processes (e.g., selection of countermeasures
or competitive highway design alternatives).

The last issue is related to the recalibration of predictive mod-
els. Up until now, the procedure for re-calibrating models did
not include the recalibration of the inverse dispersion param-
eter. Given the fact that the mean structure of model will be
different (note: usually only β0 is re-calibrated; see Lord and
Bonneson, 2005 for additional description on this assumption),
it is expected that variance structure will also be different. Thus,
the dispersion parameter should be re-calibrated using the new
dataset. As detailed in Tables 5, 6 and 8, the estimators produced
inconsistent values, particularly for small sample sizes. Conse-
quently, the selection of the proper estimator is very critical

F
(

and should be selected carefully by the safety modeler (more
details on this topic below). In recent studies, FHWA (2003)
recommends using Estimator 1 for applications related to the
SafetyAnalyst, whereas Lord and Bonneson (2005) recommend
Estimator 2 for re-calibrating the inverse dispersion parameter
when models are transferred from one jurisdiction to another.

The discussion presented above leads to two important ques-
tions: (1) which estimator should be used for data characterized
by a low sample mean and a small sample size and (2) what
should be the minimum sample size a safety modeler should
use to avoid or minimize an unreliably estimated dispersion
parameter.

To answer the first question, one can examine the results of
Tables 4 and 5. These tables show that on average Estimator 3
estimated values closer to the “theoretical” value used for the
simulation runs more frequently. In addition, the standard devi-
ation was usually smaller than the other two estimators. In the
event Estimator 3 cannot be used, Estimator 2 should be used
over Estimator 1. The number of instances where Estimator 2
was mis-estimated was much less frequent than Estimator 1.
Nonetheless, for a mean below 0.5 and a sample size below 50,
no estimator outperformed the others.

The second question can be answered using the simulation
results shown in Tables 2 and 4. For n = 1000, λ = 1.0 and φ = 2,
all three estimators performed equally well. Assuming that the
data exhibit proper asymptotic properties with the values noted
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ig. 3. Ninety-five percent confidence interval for the predicted response (y)
theoretical value used for the simulation: φ = 1).
bove (n × λor 1000 × 1.0 = 1000) (see Lawless, 1987), a matrix
an be created to determine the recommended number of obser-
ations for different values describing the sample mean. Keeping
he multiplied values fixed at 1000, the minimum sample size
uggested for different values of λ is summarized in Table 10.
Note: the sample size refers to the number of observations or
ites, e.g. intersections or segments, in the data. It does not reflect
he number of collisions collected at all the sites.) Given the pro-
ibitive costs to collect crash data and other related variables, the
ample size recommended for very small sample means (0.5 and
elow) may be difficult to collect in practice. With the prepon-
erance of evidence detailed in other fields of research on this
opic, the author recommends that no Poisson-gamma models
e estimated for a sample size below 100, even when the sample
ean is equal to 5.

able 10
ecommended minimum sample sizea to minimize an unreliably estimated dis-
ersion parameter

opulation sample mean (λ) Minimum sample size

.00 200

.00 250

.00 335

.00 500

.00 1000

.75 1335

.50 2000

.25 4000

a The sample size refers to the number of observations, e.g. intersections or
egments, in the data. It does not reflect the number of collisions collected at the
ites that are part of the sample.
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There are a few avenues for further work. First, there is a
need to determine if a small sample size and a low sample
mean affects the estimation of the inverse dispersion param-
eter (posterior value) for Bayesian models that make use of
Markov Chain Monte Carlo (MCMC) simulation techniques.
The author did not find any work on this topic in the statistical
literature. Given the recent interest in the development and appli-
cation of hierarchical Bayes models in safety research, there is
a need to determine whether they are as affected as for MLE
models. Preliminary results seem to show that Poisson-gamma
models developed using a Bayesian framework where the coeffi-
cients are estimated with WinBUGS (Spiegelhalter et al., 2003)
suffer from the same limitations, but the mis-estimation of the
inverse dispersion parameter (the posterior value) starts occur-
ring at lower sample mean and smaller sample size values than
the MLE (Lord and Miranda-Moreno, 2006). Second, further
work should be performed on finding approaches to “correct” or
“adjust” mis-estimated dispersion parameters. It may be possi-
ble to adjust the dispersion parameter given the characteristics
of the data at hand. Finally, with the extensive work done on
small sample sizes in the statistical literature, innovative esti-
mation techniques specifically tailored for crash data should be
evaluated (see Dean, 1994).

8. Summary and conclusions
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erroneous pure Poisson characteristics, increases significantly
as the sample size diminishes. An important problem with this
characteristic is that the transportation safety modeler may not
even be aware that the dispersion parameter is unreliably esti-
mated.

Second, in the event the dispersion parameter is mis-
estimated, common analyses performed in highway safety could
be seriously undermined. For instance, the EB estimates as well
as the estimation of confidence intervals for the gamma mean
and predicted response could potentially be erroneous. Thus,
the safety of road users could potentially be affected, e.g. select-
ing the wrong design alternative, if decisions are made using
erroneous modeling output. In conclusion, there is a need for
transportation safety modelers to carefully assess whether all
the components of the statistical models, including the disper-
sion parameter or its inverse, are properly estimated.
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